First Prev Record 1 - 25 of 25 Next Last
Tayari, F. and S. Blumsack, (2020). A real options approach to production and injection timing under uncertainty for CO2 sequestration in depleted shale gas reservoirs, Applied Energy, v. 263, [114491], https://doi.org/10.1016/j.apenergy.2020.114491.
Zheng, S., Y. Yao, D. Elsworth, D. Liu, and Y. Cai, (2020). Dynamic fluid interactions during CO2-ECBM and CO2 sequestration in coal seams. Part 2: CO2-H2O wettability, Fuel, v. 279, [118560].
Fan, C., D. Elsworth, S. Li, L. Zhou, Z. Yang, and Y. Song, (2019). Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery, Energy, v. 173, pp. 1054-1077.
Li, Z. and D. Elsworth, (2019). Controls of CO2–N2 gas flood ratios on enhanced shale gas recovery and ultimate CO2 sequestration, Journal of Petroleum Science and Engineering, v. 179, pp. 1037-1045.
Liu, H., S. Sang, Shimin Liu, H. Wu, T. Lan, H. Xu, and B. Ren, (2019). Supercritical-CO2 adsorption quantification and modeling for a deep coalbed methane reservoir in the southern Qinshui Basin, China, ACS Omega, v. 4, pp. 11685-11700.
Li, L., S. Khorsandi, R. T. Johns, R. M. Dilmore, (2015 November). CO2 enhanced oil recovery and storage using a gravity-enhanced process, International Journal of Greenhouse Gas Control, v. 42, pp. 502-515, ISSN 1750-5836.
Emami-Meybodi, H., (2012). Comments on the paper “Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration”, Transport in Porous Media, v. 93, pp. 171–174.
Mohan, A. R., U. Turaga, V. Shembekar, S. Viswanathan, S. V. Pisupati, and D. Elsworth, (2012 October). Toward Affordable Low Carbon Power: Economic and Environmental Analysis of Integrating CO2 – EGS with IGCC, Transactions - Geothermal Resources Council, 20 pp.
Chandra, D., C. Conrad, D. Hall, N. Montebello, A. Weiner, A. Narasimharaju, V. Rajput, E. Phelan, S. Pisupati, U. Turaga, G. Izadi, A. Ram Mohan, and D. Elsworth, (2011 October). Combined scCO2-EGS IGCC to reduce carbon emissions from power generation in the desert southwestern United States, Trans. Geotherm. Res. Council. 20 pp.
Van Essendelft, D. T., and H. H. Schobert, (2009). Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 1. Initial Investigations, Industrial & Engineering Chemistry Research, v. 48, pp. 2556-2565, DE-ie801085x.
Van Essendelft, D. T., and H. H. Schobert, (2009). Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 2. Detailed Investigation and Model Development. Industrial & Engineering Chemistry Research, v. 48, pp. 9892-9901, DE-ie9005832.
Alexander, G., M. M. Maroto-Valer, and P. Gafarova-Aksoy, (2007). Evaluation of Reaction Variables in the Dissolution of Serpentine for Mineral Carbonation. Fuel, v. 86, DE-j.fuel.2006.04.034, pp. 273-281.
Gorucu, F. B., S. A. Jikich, G. S. Bromhal, W. N. Sams, T. Ertekin, and D. H. Smith, (2007). Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO2 sequestration in coal, SPE Reservoir Evaluation & Engineering, v. 10 (4), pp. 382-92.
Hill, M. A., M. M. Maroto-Valer, and H. H. Schobert, (2007 March 25-29). “Influence of a Typical Host Rock on Brine pH as Applied to Carbon Sequestration,” ACS National Meeting, Chicago, Illinois.
Druckenmiller, M. L., M. M. Maroto-Valer, and M. Hill, (2006). “Investigation of Carbon Sequestration via Induced Calcite Formation in Natural Gas Well Brine,” Energy & Fuels, v. 20(1), pp. 172-179.
Bromhal, G. S., W. N. Sams, S. Jikich, T. Ertekin, and D. H. Smith, (2005). Simulation of CO2 sequestration in coal beds: The effects of sorption isotherms. Chemical Geology, v. 217 (3-4), pp. 201-11.
Druckenmiller, M. L., and M. M. Maroto-Valer, (2005). Carbon Sequestration Using Brine of Adjusted pH to Form Mineral Carbonates. Fuel Processing Technology, v. 86, DE-j.fuproc.2005.01.007, pp. 1599-1614.
Maroto-Valer, M. M., D. J. Fauth, M. E. Kuchta, Y. Zhang, and J. M. Andrésen, (2005). Activation of Magnesium Rich Minerals as Carbonation Feedstock Materials for CO2 Sequestration, Fuel Processing Technology, v. 86, pp.1627-1645, DE-j.fuproc.2005.01.017.
Maroto-Valer, M. M., Z. Tang, and Y. Z. Zhang, (2005). CO2 Captured by Activated and Impregnated Anthracites, Fuel Processing Technology, v. 86, pp. 1487-1502, DE-j.fuproc.2005.01.003.
Song, C. S., W. Pan, S. T. Srimat, J. Zeng, Y. Li, Y. H. Wang, B. Q. Xu, and Q. M. Zhu, (2004). Carbon Dioxide Utilization for Global Sustainability, v. 153, pp. 315-322.
Karacan, C. O, P. M. Halleck, A. S. Grader, and G. D. Mitchell, (2003 May 5-8). Kinetics of the Physical Changes and Gas Storage Capacity Induced by Carbon Dioxide Sequestration in Coal, Second Annual Conference on Carbon Sequestration, Alexandria, Va.
Karacan, C., and G. D. Mitchell, (2003). Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams, International Journal of Coal Geology, v. 53 (4), pp. 201-217.
Karacan, C. O., and G. D.Mitchell, (2002). Carbondioxide Storage Properties of Different Coal Lithotypes in Relation to Geological Sequestration in Coal Beds, 19th Annual International Pittsburgh Coal Conference.
Zarnitz, R., (2002). Implementing a Global Greenhouse Gas Emissions Trading Program, Environmental Progress, v. 21, pp. 215-219, DE-ep.670210409.
Mathews, J. P., O. Karacan, P. M. Halleck, G. D. Mitchell, and A. S. Grader, (2001 May 14-17). Storage of Pressurised Carbon Dioxide in Coal Observed Using X-Rray Tomography, First National Conference on Carbon Sequestration, 2001, Washington, D.C.